

Yining (Sam) Huang

+1 (847) 894 – 0068 | huangsam@seas.upenn.edu

EDUCATION

University of Pennsylvania , PA Aug. 2025 - Present
PhD in Computer Science

Harvard University, MA Aug. 2023 – May. 2025
Master's in Biomedical Informatics GPA: 3.96/4.00

Northwestern University, IL Sep. 2019 – Jun. 2023
Bachelor of Science in Computer Science & Statistics, Minor in Mathematics & Finance GPA: 3.99/4.00

Honors: Summa Cum Laude, McCormick School of Engineering High Honor, Tau Beta Pi - The Engineering Honor Society

PUBLICATIONS

- [1] Natalie Maus, Yimeng Zeng, Haydn Thomas Jones, **Yining Huang**, Gaurav Ng Goel, Alden Rose, Kyurae Kim, Hyun-Su Lee, Marcelo Der Torossian Torres, Fangping Wan, Cesar de la Fuente-Nunez, Mark Yatskar, Osbert Bastani, Jacob R. Gardner. **Purely Agentic Black-Box Optimization for Biological Design**. [paper]
- [2] Felix Teufel, Aaron W Kollasch, **Yining Huang**, Ole Winther, Kevin K Yang, Pascal Notin, Debora Marks. **Few-shot Protein Fitness Prediction via In-context Learning and Test-time Training**. NeurIPS 2025: AI for Science Workshop. [paper]
- [3] Zuobai Zhang*, Pascal Notin*, **Yining Huang**, Aurelie Lozano, Vijil Chenthamarakshan, Debora Marks, Payel Das, Jian Tang. **Multi-Scale Representation Learning for Protein Fitness Prediction**. NeurIPS 2024: Conference on Neural Information Processing Systems. [paper]
- [4] Guanghao Wei*, **Yining Huang***, Chenru Duan, Yue Song, Yuanqi Du. **Navigating Chemical Space with Latent Flows**. NeurIPS 2024: Conference on Neural Information Processing Systems. [paper]
- [5] **Yining Huang***, Zuobai Zhang*, Jian Tang, Debora Marks, Pascal Notin. **Augmenting Evolutionary Models with Structure-Based Retrieval**. ICML 2024: ML4MLS Workshop. [paper]
- [6] Dina Sharon*, **Yining Huang***, Motolani Oyewole, Sammy Mustafa. **How to Go with The Flow: An Analysis of Flow Matching Molecular Docking Performance with Priors of Varying Information Content**. ICLR 2024: GEM Workshop. [paper]
- [7] **Yining Huang***, Steffanie Paul*, Debora Marks. **An Energy Based Model for Incorporating Sequence Priors for Target-Specific Antibody Design**. NeurIPS 2023: GenBio Workshop. [paper]
- [8] Zaixi Zhang*, Jiaxian Yan*, **Yining Huang***, Qi Liu, Enhong Chen, Mengdi Wang, Marinka Zitnik. **Geometric Deep Learning for Structure-Based Drug Design: A Survey**. ACM Computing Survey. [paper]
- [9] Yuanqi Du*, Yingheng Wang*, **Yining Huang**, Jianan Canal Li, Yanqiao Zhu, Tian Xie, Chenru Duan, John Gregoire, Carla P Gomes. **M²Hub: Unlocking the Potential of Machine Learning for Materials Discovery**. NeurIPS 2023: Conference on Neural Information Processing Systems (Datasets and Benchmarks Track). [paper]
- [10] Qiwen Zhang, Xueke Tian, Guang Chen, Ze Yu, Xiaojian Zhang, Jingli Lu, Jinyuan Zhang, Peile Wang, Xin Hao, **Yining Huang**, Zeyuan Wang, Fei Gao, Jing Yang. **A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques**. Frontiers in Medicine. [paper]

(* Equal Contribution)

RESEARCH EXPERIENCES

Evolutionary Model with Sequence, Structure, and Domain-Informed Retrieval <i>Graduate Student – Advised by Prof. Debora Marks</i>	Apr. 2024 – Present
<ul style="list-style-type: none">Proposed a systematic MSA construction method leveraging protein sequence, structure [5], and functional domain informationIntroduced a filtering strategy to select protein homologous using structure-aware PLMs and informed by downstream tasksDeveloped an alignment-based model that learns evolutionary information from MSA based on protein functional domainsDemonstrated method efficacy on fitness prediction and observed significant improvement on previously underperformed assays	
Quantum Inspired Many-Body GNN <i>Researcher – Advised by Prof. Di Luo & Yuanqi Du</i>	Jun. 2024 – Present
<ul style="list-style-type: none">Introduced a computational framework inspired by quantum tensor network allowing design of alternative neural architectures, that are not rooted in human intuition and domain-specific knowledge, using different tensor operations and arithmeticDescribed existing neural architectures and proposed over 50 alternative GNN designs under this computational frameworkDemonstrated superior performance of alternative GNN designs across diverse tasks, including molecular property prediction	
Multi-Scale Model for Protein Fitness Prediction [3] <i>Graduate Student – Advised by Prof. Debora Marks</i>	Jan. 2024 – Aug. 2024
<ul style="list-style-type: none">Proposed a multi-modal representation learning framework for proteins that integrates sequence, structure, and surface featuresIntroduced instances of this framework S3F for protein fitness prediction that combines sequence information from pre-trained protein language model embeddings with protein backbone structure and detailed surface topology encoded by GVP networksEvaluated S3F on ProteinGym benchmark and demonstrated state-of-the-art performance on protein fitness prediction task	
Chemical Space Exploration with Potential Flow [4] <i>Researcher - Mentored by Yuanqi Du</i>	Jul. 2023 – Jun. 2024
<ul style="list-style-type: none">Developed a novel framework based on potential flows to efficiently explore the latent space of molecule generative modelsUnified previous molecule latent space traversal methods and PDE-inspired nonlinear methods under the realm of flowProposed a variety of regularization on the flow dynamics and examined their unique properties on solving different tasksValidated the method efficacy on single- and multi-objective molecule optimization under supervised and unsupervised settings	
Analysis of Flow Matching Docking Performance [6] <i>Course Project - Advised by Prof. Manolis Kellis</i>	Oct. 2023 – Feb. 2024
<ul style="list-style-type: none">Conducted a thorough evaluation of flow-matching based ligand docking performance from biology and chemistry perspectivesInvestigated effects of different flow-matching priors with varying molecular conformation details on docking performances	
De Novo Antibody Design [7] <i>Graduate Student – Advised by Prof. Debora Marks</i>	Aug. 2023 – Nov. 2023
<ul style="list-style-type: none">Investigated the sitewise performance of different antigen-conditioned antibody generative models on antibody CDR3 designProposed energy based model for de novo antibody design that combines the structure information from an antigen-conditioned graph-based antibody generative model and the sequence information from a pre-trained antibody language model	

TEACHING EXPERIENCES

CIS 6200: Advanced Machine Learning (Graduate-level) <i>Teaching Assistant - Instructor: Prof. Jacob Gardner</i>	Jan. 2026 – May. 2026
<ul style="list-style-type: none">Assisted in teaching of PhD-level machine learn	
STAT415 Introduction to Machine Learning (Graduate-level)	Mar. 2023 – Jun. 2023

Teaching Assistant - Instructor: Prof. Bradly Stadie

- Assisted in the teaching of a Ph.D.-level seminar on advanced machine learning and generative AI

CS336 Design & Analysis of Algorithms

Mar. 2022 – Jun. 2022

Teaching Assistant - Instructor: Prof. Donald Stull

- Led weekly office hours to recap and expand on class materials; graded weekly proof-based assignments with detailed feedback

RELEVANT COURSEWORK

Computation: Natural Language Processing, Reinforcement Learning, Graph Neural Network, CUDA Programming, MLOps, Quantum Computing, Optimization, Stochastic Processes, Time Series Modeling, Bayesian Statistics

Biology: Computational Biology, Clinical Informatics, Cell Biology, Physiology, Genetics, Single Cells, Rare Disease Analysis

TECHNICAL SKILLS

Programming Languages: Python, C, C++, Java, SQL, R, Rust, LaTeX, HTML/CSS, JavaScript, Racket

Libraries & Frameworks: PyTorch, TensorFlow, Lightning, PyG, DGL, RDKit